Sangpil Kim (Ph.D. Candidate)

Contact Information	https://www.linkedin.com/in/spkim921 spkim921@gmail.com https://scholar.google.com/citations?user=mzH6yYgAAAAJ&hl			
Research Interest	My research focuses on perception and prediction of human behavior and objects. My research area is in the interdisciplinary of computer vision, computer graphics, and deep learning, which specifically, includes conditional generative model, hand pose estimation, view synthesis, dataset creation, and multimodal fusing.			
Education	Purdue University Ph.D. in Computer Engineering Advisor: Prof. Karthik Ramani Thesis: Modeling deep neural networks for object generation and human understanding from multiple modalities Korea University Major: Computer Science			
Research Experience	 Research Assistant Jan. 2016 - Cu Purdue University at West Lafayette, IN Designed human and object pose estimators, generative models, novel view synthesis, dataset creation, and perception algorithm analysis for artificial intelligence systems. 			
	Research Scientist Intern Dec. 2019 - May. 2020 Facebook Reality Lab at Redmond, WA Researched on human understanding with novel mesh model representation for deep neural networks.			
Industry Experience	Software Engineering Intern May. 2018 - Aug. Nvidia at Santa Clara, CA	May. 2018 - Aug. 2018		
	 Developed object detection algorithm with deep neural networks for smart city. Software Engineer 			
	TmaxSoft at Seoul, South KoreaDeveloped power point software with C++.	Mar. 2015 - May.2015		
Military Experience	Staff Sergeant Dec. 2009 - Feb. Republic of Korea Air Force at South Korea • Leaded 20 air force soldiers for securing Korea airspace.	Dec. 2009 - Feb. 2012		
Publications	[1] First-Person View Hand Segmentation of Multi-Modal Hand Activity Video Dataset. In proceedings of the 31st British Machine Vision Conference (BMVC) [2] A Large-scale Mechanical Components Benchmark for Deep Neural	ead Author ead Author		

ı	representations.	by learning part geometry with surface and volumetric sign, Accepted in 2020 Volume 130	Lead Author
		ations neural network for object view synthesis.	Lead Author
	•	nal Transformation Generative Adversarial Network for	Lead Author
	In proceedings of 151 Demo Session	th European Conference on Computer Vision (ECCV),	
ĺ		ciculations by hallucinating heat distribution. EIEEE International Conference on Computer Vision (ICCV),	2nd Author
9	[7] Enet: A deep neu segmentation. 766 citations, arXiv	ral network architecture for real-time semantic	3rd Author
(
	Guest Lecturer, Purd Introduction of Deep	ue University Learning - Deep Learning BME 595	
!	Models and Methods Systems and Control	, Deep Learning, Statistical Machine Learning, Computationa s, Random Variables, Linear Algebra, Optimization Methods f , Econometrics, Principles Digital Color Imaging Systems, Des led Systems, Fault Tolerant Comp System Design	for
2 3	. Implemented chara . Replicated PredNet	om gradient calculation to updating weights from scratch windecter base image description neural networks with Lua. It for future sequence prediction from scratch.	
5	. Scraped images fro	om web and analyzed the noise effect on classification task. E Kinect and Boson 320 LWIR camera with C++.	
	•	ectors from images with PCA and t-SNE. pipeline for converting a sparse mesh into uniform dense me	esh.
I	Languages Python Tools Machine Learning	C#/C++/C, Python, JavaScript, MATLAB, Bash, HTML, CUDA, Numpy, Scipy, Matplotlib, Pandas, Multiprocessing, Beautif PyTorch, Torch, TensorFlow, Caffe2, scikit-learn, Keras	

References

Computer Vision

Other Tools

Technical Strength

Professional

Coursework

Selected Project

Service

Talks

[1] **Kim, S.**, Chi, H. G., Hu, X., Vegesana, A., & Ramani, K. First-Person View Hand Segmentation of Multi-Modal Hand Activity Video Dataset. In proceedings of the 31st British Machine Vision Conference

OpenCV, MeshLab, PCL

Unity, Blender, Docker, Linux, Visual Studio, WordNet, word2Vec

- [2] **Kim, S.***, Chi, H. G.*, Hu, X., Huang, Q., & Ramani, K. A Large-scale Annotated Mechanical Components Benchmark for Classification and Retrieval Tasks with Deep Neural Networks. In proceedings of 16th European Conference on Computer Vision
- [3] **Kim, S.**, Chi, H. G., Lin, G., & Ramani, K. (2020). Object synthesis by learning part geometry with surface and volumetric representations." Computer-Aided Design, Accepted Volume 130
- [4] **Kim, S.**, Winovich, N., Chi, H. G., Lin, G., & Ramani, K. (2019). Latent transformations neural network for object view synthesis. The Visual Computer, 1-15.
- [5] **Kim, S.**, Winovich, N., Lin, G., & Ramani, K. (2018). CT-GAN: Conditional Transformation Generative Adversarial Network for Image Attribute Modification. arXiv preprint arXiv:1807.04812.
- [6] Choi, C., **Kim, S.**, & Ramani, K. (2017). Learning hand articulations by hallucinating heat distribution. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3104-3113).
- [7] Paszke, A., Chaurasia, A., **Kim, S.**, & Culurciello, E. (2016). Enet: A deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147.